000 03793nam a22006615i 4500
001 978-3-031-48491-9
003 DE-He213
005 20250516160109.0
007 cr nn 008mamaa
008 240725s2024 sz | s |||| 0|eng d
020 _a9783031484919
_9978-3-031-48491-9
050 4 _aTA352-356
050 4 _aQC20.7.N6
072 7 _aTBJ
_2bicssc
072 7 _aGPFC
_2bicssc
072 7 _aSCI064000
_2bisacsh
072 7 _aTBJ
_2thema
072 7 _aGPFC
_2thema
082 0 4 _a515.39
_223
100 1 _aLuo, Albert C. J.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aTwo-dimensional Two-product Cubic Systems Vol. X
_h[electronic resource] :
_bCrossing-linear and Self-quadratic Product Vector Fields /
_cby Albert C. J. Luo.
250 _a1st ed. 2024.
264 1 _aCham :
_bSpringer Nature Switzerland :
_bImprint: Springer,
_c2024.
300 _aX, 320 p. 98 illus., 97 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aPreface -- Crossing-linear and Self-quadratic Product Systems -- Double-saddles and switching dynamics -- Vertically Paralleled Saddle-source and Saddle-sink -- Horizontally Paralleled Saddle-source and Saddle-sink -- Simple Equilibrium Networks and Switching Dynamics.
520 _aThis book, the tenth of 15 related monographs, discusses product-cubic nonlinear systems with two crossing-linear and self-quadratic products vector fields and the dynamic behaviors and singularity are presented through the first integral manifolds. The equilibrium and flow singularity and bifurcations discussed in this volume are for the appearing and switching bifurcations. The double-saddle equilibriums described are the appearing bifurcations for saddle source and saddle-sink, and for a network of saddles, sink and source. The infinite-equilibriums for the switching bifurcations are also presented, specifically: · Inflection-saddle infinite-equilibriums, · Hyperbolic (hyperbolic-secant)-sink and source infinite-equilibriums · Up-down and down-up saddle infinite-equilibriums, · Inflection-source (sink) infinite-equilibriums. Develops a theory of nonlinear dynamics and singularity of crossing-linear and self-quadratic product dynamical systems; Shows hybrid networks of singular/simple equilibriums and hyperbolic flows in two same structure product-cubic systems; Presents network switching bifurcations through infinite-equilibriums of inflection-saddles hyperbolic-sink and source.
541 _fUABC ;
_cPerpetuidad
650 0 _aDynamics.
650 0 _aNonlinear theories.
650 0 _aSystem theory.
650 0 _aMultibody systems.
650 0 _aVibration.
650 0 _aMechanics, Applied.
650 0 _aUniversal algebra.
650 0 _aEngineering mathematics.
650 0 _aEngineering
_xData processing.
650 1 4 _aApplied Dynamical Systems.
650 2 4 _aComplex Systems.
650 2 4 _aMultibody Systems and Mechanical Vibrations.
650 2 4 _aGeneral Algebraic Systems.
650 2 4 _aMathematical and Computational Engineering Applications.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031484902
776 0 8 _iPrinted edition:
_z9783031484926
776 0 8 _iPrinted edition:
_z9783031484933
856 4 0 _zLibro electrónico
_uhttp://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-3-031-48491-9
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cLIBRO_ELEC
999 _c275773
_d275772