000 04027nam a22005775i 4500
001 978-981-97-5038-2
003 DE-He213
005 20250516160133.0
007 cr nn 008mamaa
008 240906s2024 si | s |||| 0|eng d
020 _a9789819750382
_9978-981-97-5038-2
050 4 _aQ334-342
050 4 _aTA347.A78
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
100 1 _aLi, Bin.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aEmbedded Artificial Intelligence
_h[electronic resource] :
_bPrinciples, Platforms and Practices /
_cby Bin Li.
250 _a1st ed. 2024.
264 1 _aSingapore :
_bSpringer Nature Singapore :
_bImprint: Springer,
_c2024.
300 _aXI, 260 p. 146 illus., 33 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aPART I. PRINCIPLES -- Chapter 1. Embedded Artificial Intelligence -- Chapter 2. Principle of Embedded AI Chips -- Chapter 3. Lightweight Neural Networks -- Chapter 4. Compression of Deep Neural Network -- Chapter 5. Framework for Embedded Neural Network Applications -- Chapter 6. Lifelong Deep Learning -- PART II. PLATFORMS -- Chapter 7. Embedded AI Accelerator Chips -- Chapter 8. Software Framework for Embedded Neural Networks -- PART III. PRACTICES -- Chapter 9. Embedded AI Development Process -- Chapter 10. Optimizing Embedded Neural Network Models -- Chapter 11. Examples of Embedded Neural Network Application -- Chapter 12. Conclusion: Intelligence in Everything.
520 _aThis book focuses on the emerging topic of embedded artificial intelligence and provides a systematic summary of its principles, platforms, and practices. In the section on principles, it analyzes three main approaches for implementing embedded artificial intelligence: cloud computing mode, local mode, and local-cloud collaborative mode. The book identifies five essential components for implementing embedded artificial intelligence: embedded AI accelerator chips, lightweight neural network algorithms, model compression techniques, compiler optimization techniques, and multi-level cascaded application frameworks. The platform section introduces mainstream embedded AI accelerator chips and software frameworks currently used in the industry. The practical part outlines the development process of embedded artificial intelligence and showcases real-world application examples with accompanying code. As a comprehensive guide to the emerging field of embedded artificial intelligence, the book offers rich and in-depth content, a clear and logical structure, and a balanced approach to both theoretical analysis and practical applications. It provides significant reference value and can serve as an introductory and reference guide for researchers, scholars, students, engineers, and professionals interested in studying and implementing embedded artificial intelligence.
541 _fUABC ;
_cPerpetuidad
650 0 _aArtificial intelligence.
650 0 _aComputational intelligence.
650 0 _aMachine learning.
650 0 _aEmbedded computer systems.
650 0 _aRobotics.
650 1 4 _aArtificial Intelligence.
650 2 4 _aComputational Intelligence.
650 2 4 _aMachine Learning.
650 2 4 _aEmbedded Systems.
650 2 4 _aRobotics.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9789819750375
776 0 8 _iPrinted edition:
_z9789819750399
856 4 0 _zLibro electrónico
_uhttp://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-981-97-5038-2
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
942 _cLIBRO_ELEC
999 _c276319
_d276318