000 | 04030nam a22005775i 4500 | ||
---|---|---|---|
001 | 978-3-031-64087-2 | ||
003 | DE-He213 | ||
005 | 20250516160135.0 | ||
007 | cr nn 008mamaa | ||
008 | 240911s2024 sz | s |||| 0|eng d | ||
020 |
_a9783031640872 _9978-3-031-64087-2 |
||
050 | 4 | _aQ334-342 | |
050 | 4 | _aTA347.A78 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
072 | 7 |
_aUYQ _2thema |
|
082 | 0 | 4 |
_a006.3 _223 |
100 | 1 |
_aTomczak, Jakub M. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
245 | 1 | 0 |
_aDeep Generative Modeling _h[electronic resource] / _cby Jakub M. Tomczak. |
250 | _a2nd ed. 2024. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2024. |
|
300 |
_aXXIII, 313 p. 179 illus., 170 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
505 | 0 | _aChapter 1 Why Deep Generative Modeling? -- Chapter 2 Probabilistic modeling: From Mixture Models to Probabilistic Circuits -- Chapter 3 Autoregressive Models -- Chapter 4 Flow-based Models -- Chapter 5 Latent Variable Models -- Chapter 6 Hybrid Modeling -- Chapter 7 Energy-based Models -- Chapter 8 Generative Adversarial Networks -- Chapter 9 Score-based Generative Models -- Chapter 10 Deep Generative Modeling for Neural Compression -- Chapter 11 From Large Language Models to Generative AI. | |
520 | _aThis first comprehensive book on models behind Generative AI has been thoroughly revised to cover all major classes of deep generative models: mixture models, Probabilistic Circuits, Autoregressive Models, Flow-based Models, Latent Variable Models, GANs, Hybrid Models, Score-based Generative Models, Energy-based Models, and Large Language Models. In addition, Generative AI Systems are discussed, demonstrating how deep generative models can be used for neural compression. All chapters are accompanied by code snippets that help to better understand the modeling frameworks presented. Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics of machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It should appeal to students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics who wish to get familiar with deep generative modeling. In order to engage with a reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on the author's GitHub site: github.com/jmtomczak/intro_dgm The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them. | ||
541 |
_fUABC ; _cPerpetuidad |
||
650 | 0 | _aArtificial intelligence. | |
650 | 0 | _aMachine learning. | |
650 | 0 |
_aComputer science _xMathematics. |
|
650 | 0 | _aMathematical statistics. | |
650 | 0 | _aComputer simulation. | |
650 | 1 | 4 | _aArtificial Intelligence. |
650 | 2 | 4 | _aMachine Learning. |
650 | 2 | 4 | _aProbability and Statistics in Computer Science. |
650 | 2 | 4 | _aComputer Modelling. |
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783031640865 |
776 | 0 | 8 |
_iPrinted edition: _z9783031640889 |
776 | 0 | 8 |
_iPrinted edition: _z9783031640896 |
856 | 4 | 0 |
_zLibro electrónico _uhttp://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-3-031-64087-2 |
912 | _aZDB-2-SCS | ||
912 | _aZDB-2-SXCS | ||
942 | _cLIBRO_ELEC | ||
999 |
_c276358 _d276357 |