000 04334nam a22006495i 4500
001 978-3-031-66556-1
003 DE-He213
005 20250516160141.0
007 cr nn 008mamaa
008 240801s2024 sz | s |||| 0|eng d
020 _a9783031665561
_9978-3-031-66556-1
050 4 _aTJ265
050 4 _aTP156.M3
072 7 _aTGMB
_2bicssc
072 7 _aSCI065000
_2bisacsh
072 7 _aTGMB
_2thema
082 0 4 _a621.4021
_223
100 1 _aPellegrini, Laura A.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aGreen H2 Transport through LH2, NH3 and LOHC
_h[electronic resource] :
_bOpportunities and Challenges /
_cby Laura A. Pellegrini, Elvira Spatolisano, Federica Restelli, Giorgia De Guido, Alberto R. de Angelis, Andrea Lainati.
250 _a1st ed. 2024.
264 1 _aCham :
_bSpringer Nature Switzerland :
_bImprint: Springer,
_c2024.
300 _aXI, 85 p. 41 illus., 29 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aPoliMI SpringerBriefs,
_x2282-2585
505 0 _aGreen H2 One of the Allies for Decarbonization -- Systematic Framework for the Techno economic Assessment of Green H2 Value Chains -- Liquefied H2 as Green H2 Carrier.-Ammonia as Green H2 Carrier -- Toluene methylcyclohexane as Green H2 carrier -- Dibenzyltoluene perhydro dibenzyltoluene as Green H2 Carrier -- Comparison and Future Perspectives.
520 _aThis book explores the opportunities and challenges of hydrogen transport through different carriers (i.e., liquefied hydrogen, ammonia, toluene, and dibenzyltoluene). Each value chain analyzed includes: renewable H2 conversion to the carrier, storage of the hydrogenated carrier, its seaborne transport, reconversion of the carrier to produce H2 and hydrogen distribution. The conversion and reconversion processes are the cost drivers of the whole value chain. These stages are investigated through an in-depth techno-economic assessment, to highlight the critical issues and the need for further investigation (low TRL). The alternatives are examined considering: different H2 applications (industrial and mobility sector); different costs of utilities (present and future scenarios); and different distances from the loading to the unloading terminal. All these scenarios are discussed and compared by means of the levelized cost method, to understand which is the most cost-effective choice for each case study. As a result, H2 application to the industrial sector shows the lowest costs, with ammonia being the best alternative for transporting and storing hydrogen in this case. Liquefied hydrogen is the most expensive H2 carrier for the industrial application, as a consequence of the high liquefaction costs while holding promises for the mobility sector.
541 _fUABC ;
_cPerpetuidad
650 0 _aThermodynamics.
650 0 _aHeat engineering.
650 0 _aHeat transfer.
650 0 _aMass transfer.
650 0 _aChemical engineering.
650 0 _aHydrogen as fuel.
650 1 4 _aEngineering Thermodynamics, Heat and Mass Transfer.
650 2 4 _aChemical Engineering.
650 2 4 _aHydrogen Energy.
700 1 _aSpatolisano, Elvira.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aRestelli, Federica.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aDe Guido, Giorgia.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _ade Angelis, Alberto R.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aLainati, Andrea.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783031665554
776 0 8 _iPrinted edition:
_z9783031665578
830 0 _aPoliMI SpringerBriefs,
_x2282-2585
856 4 0 _zLibro electrónico
_uhttp://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-3-031-66556-1
912 _aZDB-2-ENG
912 _aZDB-2-SXE
942 _cLIBRO_ELEC
999 _c276482
_d276481