000 | 03318nam a22005415i 4500 | ||
---|---|---|---|
001 | 978-3-031-66040-5 | ||
003 | DE-He213 | ||
005 | 20250516160143.0 | ||
007 | cr nn 008mamaa | ||
008 | 240927s2024 sz | s |||| 0|eng d | ||
020 |
_a9783031660405 _9978-3-031-66040-5 |
||
050 | 4 | _aQ342 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
072 | 7 |
_aUYQ _2thema |
|
082 | 0 | 4 |
_a006.3 _223 |
245 | 1 | 0 |
_aAlgebraic Quasi-Fractal Logic of Smart Systems _h[electronic resource] : _bTheory and Practice / _cedited by Natalia Serdyukova, Vladimir Serdyukov. |
250 | _a1st ed. 2024. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2024. |
|
300 |
_aXVII, 269 p. 62 illus., 36 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aIntelligent Systems Reference Library, _x1868-4408 ; _v251 |
|
505 | 0 | _aQuasi fractal Propositional Algebra Digitalization of Propositional Algebra and NPC -- Quasi fractal Temporal Topological Logic with Time Parameter over Topological Space -- Application to Brownian Motion. | |
520 | _aThis book is a continuation of the Algebraic Formalization of Smart Systems. Theory and Practice, 2018, and Algebraic Identification of Smart Systems. Theory and Practice, 2021. Algebraic logic refers to the connection between Boolean algebra and classical propositional calculus. This connection was discovered by George Boole and then developed by other mathematicians, such as C. S. Peirce and Ernst Schroeder. This trend culminated in the Lindenbaum-Tarski algebras. Here we try to connect algebraic logic and quasi-fractal technique, based on algebraic formalization of smart systems to get facts about smart systems functioning and connections of their qualitative and quantitative indicators. Basic techniques we used: algebraic quasi-fractal systems, Erdős-Rényi algorithm, a notion of -giant component of an algebraic system, fixed point theorem, purities, i.e., embeddings preserving -property of an algebraic system. The book is aimed for all interested in these issues. | ||
541 |
_fUABC ; _cPerpetuidad |
||
650 | 0 | _aComputational intelligence. | |
650 | 0 | _aArtificial intelligence. | |
650 | 1 | 4 | _aComputational Intelligence. |
650 | 2 | 4 | _aArtificial Intelligence. |
700 | 1 |
_aSerdyukova, Natalia. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt |
|
700 | 1 |
_aSerdyukov, Vladimir. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt |
|
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783031660399 |
776 | 0 | 8 |
_iPrinted edition: _z9783031660412 |
776 | 0 | 8 |
_iPrinted edition: _z9783031660429 |
830 | 0 |
_aIntelligent Systems Reference Library, _x1868-4408 ; _v251 |
|
856 | 4 | 0 |
_zLibro electrónico _uhttp://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-3-031-66040-5 |
912 | _aZDB-2-INR | ||
912 | _aZDB-2-SXIT | ||
942 | _cLIBRO_ELEC | ||
999 |
_c276531 _d276530 |