000 03602nam a22005295i 4500
001 978-981-19-4933-3
003 DE-He213
005 20250516160144.0
007 cr nn 008mamaa
008 240928s2024 si | s |||| 0|eng d
020 _a9789811949333
_9978-981-19-4933-3
050 4 _aQ325.5-.7
072 7 _aUYQM
_2bicssc
072 7 _aMAT029000
_2bisacsh
072 7 _aUYQM
_2thema
082 0 4 _a006.31
_223
100 1 _aXiao, Zhiqing.
_eauthor.
_0(orcid)0000-0001-5207-638X
_1https://orcid.org/0000-0001-5207-638X
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aReinforcement Learning
_h[electronic resource] :
_bTheory and Python Implementation /
_cby Zhiqing Xiao.
250 _a1st ed. 2024.
264 1 _aSingapore :
_bSpringer Nature Singapore :
_bImprint: Springer,
_c2024.
300 _aXXII, 559 p. 61 illus., 60 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
505 0 _aChapter 1. Introduction of Reinforcement Learning (RL) -- Chapter 2. MDP: Markov Decision Process -- Chapter 3. Model-based Numerical Iteration -- Chapter 4. MC: Monte Carlo Learning -- Chapter 5. TD: Temporal Difference Learning -- Chapter 6. Function Approximation -- Chapter 7. PG: Policy Gradient -- Chapter 8. AC: Actor-Critic -- Chapter 9. DPG: Deterministic Policy Gradient -- Chapter 10. Maximum-Entropy RL -- Chapter 11. Policy-based Gradient-Free Algorithms -- Chapter 12. Distributional RL -- Chapter 13. Minimize Regret -- Chapter 14. Tree Search -- Chapter 15. More Agent-Environment Interfaces -- Chapter 16. Learn from Feedback and Imitation Learning.
520 _aReinforcement Learning: Theory and Python Implementation is a tutorial book on reinforcement learning, with explanations of both theory and applications. Starting from a uniform mathematical framework, this book derives the theory of modern reinforcement learning systematically and introduces all mainstream reinforcement learning algorithms such as PPO, SAC, and MuZero. It also covers key technologies of GPT training such as RLHF, IRL, and PbRL. Every chapter is accompanied by high-quality implementations, and all implementations of deep reinforcement learning algorithms are with both TensorFlow and PyTorch. Codes can be found on GitHub along with their results and are runnable on a conventional laptop with either Windows, macOS, or Linux. This book is intended for readers who want to learn reinforcement learning systematically and apply reinforcement learning to practical applications. It is also ideal to academical researchers who seek theoretical foundation or algorithm enhancement in their cutting-edge AI research.
541 _fUABC ;
_cPerpetuidad
650 0 _aMachine learning.
650 0 _aArtificial intelligence.
650 0 _aRobotics.
650 1 4 _aMachine Learning.
650 2 4 _aArtificial Intelligence.
650 2 4 _aRobotics.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9789811949326
776 0 8 _iPrinted edition:
_z9789811949340
776 0 8 _iPrinted edition:
_z9789811949357
856 4 0 _zLibro electrónico
_uhttp://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-981-19-4933-3
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
942 _cLIBRO_ELEC
999 _c276552
_d276551