000 | 03602nam a22005295i 4500 | ||
---|---|---|---|
001 | 978-981-19-4933-3 | ||
003 | DE-He213 | ||
005 | 20250516160144.0 | ||
007 | cr nn 008mamaa | ||
008 | 240928s2024 si | s |||| 0|eng d | ||
020 |
_a9789811949333 _9978-981-19-4933-3 |
||
050 | 4 | _aQ325.5-.7 | |
072 | 7 |
_aUYQM _2bicssc |
|
072 | 7 |
_aMAT029000 _2bisacsh |
|
072 | 7 |
_aUYQM _2thema |
|
082 | 0 | 4 |
_a006.31 _223 |
100 | 1 |
_aXiao, Zhiqing. _eauthor. _0(orcid)0000-0001-5207-638X _1https://orcid.org/0000-0001-5207-638X _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
245 | 1 | 0 |
_aReinforcement Learning _h[electronic resource] : _bTheory and Python Implementation / _cby Zhiqing Xiao. |
250 | _a1st ed. 2024. | ||
264 | 1 |
_aSingapore : _bSpringer Nature Singapore : _bImprint: Springer, _c2024. |
|
300 |
_aXXII, 559 p. 61 illus., 60 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
505 | 0 | _aChapter 1. Introduction of Reinforcement Learning (RL) -- Chapter 2. MDP: Markov Decision Process -- Chapter 3. Model-based Numerical Iteration -- Chapter 4. MC: Monte Carlo Learning -- Chapter 5. TD: Temporal Difference Learning -- Chapter 6. Function Approximation -- Chapter 7. PG: Policy Gradient -- Chapter 8. AC: Actor-Critic -- Chapter 9. DPG: Deterministic Policy Gradient -- Chapter 10. Maximum-Entropy RL -- Chapter 11. Policy-based Gradient-Free Algorithms -- Chapter 12. Distributional RL -- Chapter 13. Minimize Regret -- Chapter 14. Tree Search -- Chapter 15. More Agent-Environment Interfaces -- Chapter 16. Learn from Feedback and Imitation Learning. | |
520 | _aReinforcement Learning: Theory and Python Implementation is a tutorial book on reinforcement learning, with explanations of both theory and applications. Starting from a uniform mathematical framework, this book derives the theory of modern reinforcement learning systematically and introduces all mainstream reinforcement learning algorithms such as PPO, SAC, and MuZero. It also covers key technologies of GPT training such as RLHF, IRL, and PbRL. Every chapter is accompanied by high-quality implementations, and all implementations of deep reinforcement learning algorithms are with both TensorFlow and PyTorch. Codes can be found on GitHub along with their results and are runnable on a conventional laptop with either Windows, macOS, or Linux. This book is intended for readers who want to learn reinforcement learning systematically and apply reinforcement learning to practical applications. It is also ideal to academical researchers who seek theoretical foundation or algorithm enhancement in their cutting-edge AI research. | ||
541 |
_fUABC ; _cPerpetuidad |
||
650 | 0 | _aMachine learning. | |
650 | 0 | _aArtificial intelligence. | |
650 | 0 | _aRobotics. | |
650 | 1 | 4 | _aMachine Learning. |
650 | 2 | 4 | _aArtificial Intelligence. |
650 | 2 | 4 | _aRobotics. |
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9789811949326 |
776 | 0 | 8 |
_iPrinted edition: _z9789811949340 |
776 | 0 | 8 |
_iPrinted edition: _z9789811949357 |
856 | 4 | 0 |
_zLibro electrónico _uhttp://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-981-19-4933-3 |
912 | _aZDB-2-SCS | ||
912 | _aZDB-2-SXCS | ||
942 | _cLIBRO_ELEC | ||
999 |
_c276552 _d276551 |