000 | 03990nam a22006375i 4500 | ||
---|---|---|---|
001 | 978-981-97-8009-9 | ||
003 | DE-He213 | ||
005 | 20250516160159.0 | ||
007 | cr nn 008mamaa | ||
008 | 241127s2024 si | s |||| 0|eng d | ||
020 |
_a9789819780099 _9978-981-97-8009-9 |
||
050 | 4 | _aTA1637-1638 | |
072 | 7 |
_aTJF _2bicssc |
|
072 | 7 |
_aUYT _2bicssc |
|
072 | 7 |
_aCOM012050 _2bisacsh |
|
072 | 7 |
_aTJF _2thema |
|
072 | 7 |
_aUYT _2thema |
|
082 | 0 | 4 |
_a621.382 _223 |
100 | 1 |
_aDing, Yao. _eauthor. _0(orcid)0000-0003-2040-2640 _1https://orcid.org/0000-0003-2040-2640 _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
245 | 1 | 0 |
_aGraph Neural Network for Feature Extraction and Classification of Hyperspectral Remote Sensing Images _h[electronic resource] / _cby Yao Ding, Zhili Zhang, Haojie Hu, Fang He, Shuli Cheng, Yijun Zhang. |
250 | _a1st ed. 2024. | ||
264 | 1 |
_aSingapore : _bSpringer Nature Singapore : _bImprint: Springer, _c2024. |
|
300 |
_aXII, 183 p. 73 illus., 67 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aIntelligent Perception and Information Processing, _x3059-3816 |
|
505 | 0 | _aIntroduction -- Graph sample and aggregate-attention network for hyperspectral image classification -- Multi-feature fusion: Graph neural network and CNN combining for hyperspectral image classification -- Pixel and hyperpixel level feature combining for hyperspectral image classification -- Global dynamic graph optimization for hyperspectral image classification -- Exploring relationship between transformer and graph convolution for hyperspectral image classification. | |
520 | _aThis book deals with hyperspectral image classification using graph neural network methods, focusing on classification model designing, graph information dissemination, and graph construction. In the book, various graph neural network based classifiers have been proposed for hyperspectral image classification to improve the classification accuracy. This book has promoted the application of graph neural network in hyperspectral image classification, providing reference for remote sensing image processing. It will be a useful reference for researchers in remote sensing image processing and image neural network design. | ||
541 |
_fUABC ; _cPerpetuidad |
||
650 | 0 | _aImage processing. | |
650 | 0 | _aNeural networks (Computer science) . | |
650 | 0 | _aMachine learning. | |
650 | 1 | 4 | _aImage Processing. |
650 | 2 | 4 | _aMathematical Models of Cognitive Processes and Neural Networks. |
650 | 2 | 4 | _aMachine Learning. |
700 | 1 |
_aZhang, Zhili. _eauthor. _0(orcid)0000-0003-4894-5495 _1https://orcid.org/0000-0003-4894-5495 _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
700 | 1 |
_aHu, Haojie. _eauthor. _0(orcid)0000-0002-6645-8853 _1https://orcid.org/0000-0002-6645-8853 _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
700 | 1 |
_aHe, Fang. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
700 | 1 |
_aCheng, Shuli. _eauthor. _0(orcid)0000-0003-4759-0282 _1https://orcid.org/0000-0003-4759-0282 _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
700 | 1 |
_aZhang, Yijun. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9789819780082 |
776 | 0 | 8 |
_iPrinted edition: _z9789819780105 |
776 | 0 | 8 |
_iPrinted edition: _z9789819780112 |
830 | 0 |
_aIntelligent Perception and Information Processing, _x3059-3816 |
|
856 | 4 | 0 |
_zLibro electrónico _uhttp://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-981-97-8009-9 |
912 | _aZDB-2-ENG | ||
912 | _aZDB-2-SXE | ||
942 | _cLIBRO_ELEC | ||
999 |
_c276886 _d276885 |