000 03559nam a22002897a 4500
003 MX-MeUAM
005 20251203062218.0
008 251202s2025 mx ||||fo||d| 00| 0 spa d
040 _cMX-MeUAM
_bspa
_aMX-MeUAM
050 4 _aTK5103.2
_bA75 2025
100 1 _aArmenta García, Jesús Albany
_927072
245 1 0 _aA system for human activity recognition using WI-FI CSI on embedded device
_h[recurso electrónico] /
_cJesús Albany Armenta García ; director, Félix Fernando González Navarro ; codirector, Jesús Caro Gutiérrez
260 _aMexicali, Baja California,
_c2025
300 _a1 recurso en línea, 163 p. ;
_bil. col., gráficas
500 _aMaestría y Doctorado en Ciencias e Ingeniería
502 _aTesis (Doctorado)--Universidad Autónoma de Baja California, Instituto de Ingeniería, Mexicali, 2025.
504 _aIncluye referencias bibliográficas
520 _aThis thesis addresses the limitations of current safety alert systems that rely on wearable sensors by proposing a novel Human Activity Recognition system based on Wi-Fi Channel State Information (CSI) and designed following the Edge Computing paradigm, where data processing occurs directly on the device responsible for data collection. The research is structured in three phases. First, an Structured Literature Review (SLR) was conducted to assess state-of-the-art methods for Wi-Fi CSI collection and processing, re- vealing two critical gaps: the lack of a user-friendly, high-performance CSI collection tool and the absence of edge-based implementations for near real-time Wi-Fi sensing with low-cost devices. To address these gaps, this work first introduces the ESP32 CSI Web Collecting Tool, a tool for collecting Wi-Fi CSI from ESP32 devices. Experimental results demonstrate that the proposed tool outperforms existing ESP32-based solutions, achieving a packet rate of up to 85 packets per second (compared to 30 packets per second in prior tools) when transmitting CSI data to a computer via a USB port. Addition- ally, the tool supports local data storage via an SD card and real-time transmission to external devices through GPIO pins, enhancing its versatility for edge applications. Leveraging this tool, a lightweight Deep Learning model was opti- mized for deployment on the resource-constrained ESP32 microcon- troller. By considering the hardware limitations of the implemen- tation device, the model achieves an overall classification accuracy of 90.65% with an inference time of 232 ms, enabling near real-time functioning at the edge. The contributions of this work include a high-performance, open- source CSI collection tool for the ESP32 platform and the first known implementation of an embedded system leveraging Deep Learning model for Wi-Fi HAR on an ESP32 device, which demonstrates the feasibility of near real-time, device-free safety monitoring.
650 4 _aSistemas de comunicación inalámbrica
_vTesis y disertaciones académicas
650 4 _aSistemas de comunicación inalámbrica: innovaciones tecnológicas
_vTesis y disertaciones académicas
650 4 _aSistemas de comunicación inalámbrica: medidas de seguridad
_vTesis y disertaciones académicas
700 1 _aGonzález Navarro, Félix Fernando
_914607
_edir.
700 1 _aCaro Gutiérrez, Jesús
_918691
_ecodir.
710 2 _aUniversidad Autónoma de Baja California.
_bInstituto de Ingeniería
_93321
856 4 _uhttps://drive.google.com/file/d/1h_rEWMm1V4xU7wOIjI7De-fvtkvrteeu/view?usp=sharing
_zTesis Digital
942 _cTESIS
999 _c281845
_d281844