From Objects to Diagrams for Ranges of Functors [recurso electrónico] / by Pierre Gillibert, Friedrich Wehrung.
Tipo de material: TextoSeries Lecture Notes in Mathematics ; 2029Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Descripción: X, 158 p. 19 illus. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783642217746Tema(s): Mathematics | Algebra | K-theory | Logic, Symbolic and mathematical | Mathematics | Algebra | Category Theory, Homological Algebra | General Algebraic Systems | Order, Lattices, Ordered Algebraic Structures | Mathematical Logic and Foundations | K-TheoryFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 512 Clasificación LoC:QA150-272Recursos en línea: Libro electrónico
Contenidos:
En: Springer eBooksResumen: This work introduces tools from the field of category theory that make it possible to tackle a number of representation problems that have remained unsolvable to date (e.g. the determination of the range of a given functor). The basic idea is: if a functor lifts many objects, then it also lifts many (poset-indexed) diagrams.
1 Background -- 2 Boolean Algebras Scaled with Respect to a Poset -- 3 The Condensate Lifting Lemma (CLL) -- 4 Larders from First-order Structures -- 5 Congruence-Preserving Extensions -- 6 Larders from von Neumann Regular Rings -- 7 Discussion.
Tipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | QA150 -272 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 376362-2001 |
Navegando Biblioteca Electrónica Estantes, Código de colección: Colección de Libros Electrónicos Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
QA150 -272 Ring and Module Theory | QA150 -272 Hilbert Functions of Filtered Modules | QA150 -272 Algebraic Patching | QA150 -272 From Objects to Diagrams for Ranges of Functors | QA150 -272 Discrete Mathematics in Statistical Physics | QA150 -272 Algebraic Geometry I | QA150 -272 Álgebra Linear |
1 Background -- 2 Boolean Algebras Scaled with Respect to a Poset -- 3 The Condensate Lifting Lemma (CLL) -- 4 Larders from First-order Structures -- 5 Congruence-Preserving Extensions -- 6 Larders from von Neumann Regular Rings -- 7 Discussion.
This work introduces tools from the field of category theory that make it possible to tackle a number of representation problems that have remained unsolvable to date (e.g. the determination of the range of a given functor). The basic idea is: if a functor lifts many objects, then it also lifts many (poset-indexed) diagrams.
19