Sistemas de aprendizaje automático / Emilio Soria Olivas ... [et al.]

Colaborador(es): Soria Olivas, Emilio, 1969- [coaut.]Tipo de material: TextoTextoLenguaje original: Español Detalles de publicación: Ciudad de México : Alfaomega, Ra-ma, 2024Edición: 1a edDescripción: 259 p. : il. ; fot. ; graf. ; 24 cmISBN: 9786075761626Tema(s): Inteligencia artificial -- Aspectos sociales | Inteligencia artificial: modelos matemáticosClasificación LoC:Q335 | S58 2024Resumen: El presente libro tiene una clara vocación didáctica, se dirige a todas las personas que quieren adentrarse en el apasionante campo del aprendizaje automático combinando la teórica con la práctica para que sea sencillo asimilar las explicaciones. En esta obra se revisan los algoritmos más comunes y su implementación en Python. Comienza con una introducción a las claves que han impulsado nuestra sociedad hacia “la era de los datos” y explora cómo, mediante técnicas de aprendizaje automático, obtener partido a la inmensa cantidad de datos que hoy nos rodea. A continuación, se presenta el aprendizaje no supervisado con sus principales algoritmos y usos: agrupamiento, manifolds, reglas de asociación y algoritmos de detección de anomalías. Le sigue el aprendizaje supervisado; partiendo del modelo más simple, modelo lineal multivariante, se llega a las Máquinas de Soporte Vectorial (SVM). Finaliza con el aprendizaje profundo (gran parte de lo que denominamos Inteligencia Artificial) donde se explican, de una manera sencilla e intuitiva, los perceptrones multicapa profundos, las redes convolucionales profundas (CNN) y los modelos recurrentes Long Short Term Memory (LSTM). Esta obra contiene numerosas aplicaciones prácticas con su código Python que podrá descargar desde la web del libro.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Libro Biblioteca Central Ensenada
Acervo General Q335 S58 2024 (Browse shelf(Abre debajo)) 1 Disponible ENS098068

Incluye referencias bibliográficas e índice.

El presente libro tiene una clara vocación didáctica, se dirige a todas las personas que quieren adentrarse en el apasionante campo del aprendizaje automático combinando la teórica con la práctica para que sea sencillo asimilar las explicaciones.

En esta obra se revisan los algoritmos más comunes y su implementación en Python. Comienza con una introducción a las claves que han impulsado nuestra sociedad hacia “la era de los datos” y explora cómo, mediante técnicas de aprendizaje automático, obtener partido a la inmensa cantidad de datos que hoy nos rodea.

A continuación, se presenta el aprendizaje no supervisado con sus principales algoritmos y usos: agrupamiento, manifolds, reglas de asociación y algoritmos de detección de anomalías. Le sigue el aprendizaje supervisado; partiendo del modelo más simple, modelo lineal multivariante, se llega a las Máquinas de Soporte Vectorial (SVM).

Finaliza con el aprendizaje profundo (gran parte de lo que denominamos Inteligencia Artificial) donde se explican, de una manera sencilla e intuitiva, los perceptrones multicapa profundos, las redes convolucionales profundas (CNN) y los modelos recurrentes Long Short Term Memory (LSTM). Esta obra contiene numerosas aplicaciones prácticas con su código Python que podrá descargar desde la web del libro.

Español.

Con tecnología Koha