Towards covalent organic framework field effect transistor [recurso electrónico] / María Fernanda Herrera Martínez ; dirigida por Ramon Carrillo Bastos

Por: Herrera Martínez, María Fernanda, 1998- [aut.]Colaborador(es): Carrillo Bastos, Ramón [dir.]Tipo de material: TextoTextoDetalles de publicación: Ensenada, Baja California, 2025Descripción: 1 recurso en línea 66 p. : il. ; col. ; graf. : col. : fot. : colTema(s): Nanotecnología | Nanotechnology | Transistor de efecto de campo | Field-effect TransistorClasificación LoC:T174.7 | H47 2025Recursos en línea: Tesis Digital.Texto Nota de disertación: Tesis (Maestría)--Universidad Autónoma de Baja California. Facultad de Ciencias, Ensenada, 2025 Resumen: The urge to make things smaller and more efficient in the world of advanced electronics has driven tremendous innovation in nanotechnology. A key technological advancement seen in nanotechnology is the use of field-effect transistors, which allow good control over electronic signals at a nanoscale level, underpinning the digital revolution. Although silicon is still the semiconductor of choice for these devices, there has been a growing interest in alternative materials as we approach the limits of Moore’s law. In this project, our aim is to create a field-effect transistor device composed of a two-dimensional Covalent triazine framework-1 material. These frameworks, if appropriately chemically engineered, can exhibit interesting electronic structure characteristics such as Dirac cones and flat bands.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Tesis Biblioteca Central Ensenada
Colección de Tesis T174.7 H47 2025 (Browse shelf(Abre debajo)) 1 Disponible ENS100663

Maestría.

Tesis (Maestría)--Universidad Autónoma de Baja California. Facultad de Ciencias, Ensenada, 2025

Incluye referencias bibliográficas

The urge to make things smaller and more efficient in the world of advanced electronics has driven tremendous innovation in nanotechnology. A key technological advancement seen in nanotechnology is the use of field-effect transistors, which allow good control over electronic signals at a nanoscale level, underpinning the digital revolution. Although silicon is still the semiconductor of choice for these devices, there has been a growing interest in alternative materials as we approach the limits of Moore’s law. In this project, our aim is to create a field-effect transistor device composed of a two-dimensional Covalent triazine framework-1 material. These frameworks, if appropriately chemically engineered, can exhibit interesting electronic structure characteristics such as Dirac cones and flat bands.

Con tecnología Koha