Towards covalent organic framework field effect transistor [recurso electrónico] / María Fernanda Herrera Martínez ; dirigida por Ramon Carrillo Bastos
Tipo de material:
TextoDetalles de publicación: Ensenada, Baja California, 2025Descripción: 1 recurso en línea 66 p. : il. ; col. ; graf. : col. : fot. : colTema(s): Nanotecnología | Nanotechnology | Transistor de efecto de campo | Field-effect TransistorClasificación LoC:T174.7 | H47 2025Recursos en línea: Tesis Digital.
Nota de disertación: Tesis (Maestría)--Universidad Autónoma de Baja California. Facultad de Ciencias, Ensenada, 2025 Resumen: The urge to make things smaller and more efficient in the world of advanced electronics has driven tremendous innovation in nanotechnology. A key technological advancement seen in nanotechnology is the use of field-effect transistors, which allow good control over electronic signals at a nanoscale level, underpinning the digital revolution. Although silicon is still the semiconductor of choice for these devices, there has been a growing interest in alternative materials as we approach the limits of Moore’s law. In this project, our aim is to create a field-effect transistor device composed of a two-dimensional Covalent triazine framework-1 material. These frameworks, if appropriately chemically engineered, can exhibit interesting electronic structure characteristics such as Dirac cones and flat bands.
| Tipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
|---|---|---|---|---|---|---|---|
| Tesis | Biblioteca Central Ensenada | Colección de Tesis | T174.7 H47 2025 (Browse shelf(Abre debajo)) | 1 | Disponible | ENS100663 |
Maestría.
Tesis (Maestría)--Universidad Autónoma de Baja California. Facultad de Ciencias, Ensenada, 2025
Incluye referencias bibliográficas
The urge to make things smaller and more efficient in the world of advanced electronics has driven tremendous innovation in nanotechnology. A key technological advancement seen in nanotechnology is the use of field-effect transistors, which allow good control over electronic signals at a nanoscale level, underpinning the digital revolution. Although silicon is still the semiconductor of choice for these devices, there has been a growing interest in alternative materials as we approach the limits of Moore’s law. In this project, our aim is to create a field-effect transistor device composed of a two-dimensional Covalent triazine framework-1 material. These frameworks, if appropriately chemically engineered, can exhibit interesting electronic structure characteristics such as Dirac cones and flat bands.

